logo

Expression of type Lambda

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, b, l
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Integer, Mult, one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Add(l, one)
expr = Lambda(l, Conditional(Equals(Mult(a, b, sub_expr1), Mult(Mult(a, b), sub_expr1)).with_wrapping_at(2), InSet(l, Integer)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
l \mapsto \left\{\begin{array}{c} \begin{array}{l} \left(a \cdot b \cdot \left(l + 1\right)\right) =  \\ \left(\left(a \cdot b\right) \cdot \left(l + 1\right)\right) \end{array} \end{array} \textrm{ if } l \in \mathbb{Z}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 22
body: 2
1ExprTuple22
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple22, 11
9Operationoperator: 16
operands: 12
10Operationoperator: 16
operands: 13
11Literal
12ExprTuple20, 21, 15
13ExprTuple14, 15
14Operationoperator: 16
operands: 17
15Operationoperator: 18
operands: 19
16Literal
17ExprTuple20, 21
18Literal
19ExprTuple22, 23
20Variable
21Variable
22Variable
23Literal