logo

Expression of type Add

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import a, k
from proveit.numbers import Add, Interval, Sum, nine, one, subtract, two
In [2]:
# build up the expression from sub-expressions
expr = Add(Sum(index_or_indices = [k], summand = subtract(k, two), domain = Interval(a, subtract(nine, one))), subtract(nine, two))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\sum_{k = a}^{9 - 1} \left(k - 2\right)\right) + \left(9 - 2\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 24
operands: 1
1ExprTuple2, 3
2Operationoperator: 4
operand: 7
3Operationoperator: 24
operands: 6
4Literal
5ExprTuple7
6ExprTuple26, 15
7Lambdaparameter: 16
body: 9
8ExprTuple16
9Conditionalvalue: 10
condition: 11
10Operationoperator: 24
operands: 12
11Operationoperator: 13
operands: 14
12ExprTuple16, 15
13Literal
14ExprTuple16, 17
15Operationoperator: 28
operand: 21
16Variable
17Operationoperator: 19
operands: 20
18ExprTuple21
19Literal
20ExprTuple22, 23
21Literal
22Variable
23Operationoperator: 24
operands: 25
24Literal
25ExprTuple26, 27
26Literal
27Operationoperator: 28
operand: 30
28Literal
29ExprTuple30
30Literal