logo

Expression of type Lambda

from the theory of proveit.numbers.summation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, b, k
from proveit.core_expr_types import alpha_k
from proveit.logic import InSet
from proveit.numbers import Interval
In [2]:
# build up the expression from sub-expressions
expr = Lambda(k, Conditional(alpha_k, InSet(k, Interval(a, b))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
k \mapsto \left\{\alpha_{k} \textrm{ if } k \in \{a~\ldotp \ldotp~b\}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 8
body: 1
1Conditionalvalue: 2
condition: 3
2IndexedVarvariable: 4
index: 8
3Operationoperator: 6
operands: 7
4Variable
5ExprTuple8
6Literal
7ExprTuple8, 9
8Variable
9Operationoperator: 10
operands: 11
10Literal
11ExprTuple12, 13
12Variable
13Variable