logo

Expression of type Lambda

from the theory of proveit.numbers.rounding

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, x, y
from proveit.logic import And, InSet
from proveit.numbers import Add, Ceil, Integer, Less, LessEq, Real, one
In [2]:
# build up the expression from sub-expressions
expr = Lambda([x, y], Conditional(LessEq(Add(x, one), Ceil(y)), And(InSet(x, Integer), InSet(y, Real), Less(x, y))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x, y\right) \mapsto \left\{\left(x + 1\right) \leq \left\lceil y\right\rceil \textrm{ if } x \in \mathbb{Z} ,  y \in \mathbb{R} ,  x < y\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 21
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple10, 11, 12
8Operationoperator: 13
operands: 14
9Operationoperator: 15
operand: 26
10Operationoperator: 18
operands: 17
11Operationoperator: 18
operands: 19
12Operationoperator: 20
operands: 21
13Literal
14ExprTuple25, 22
15Literal
16ExprTuple26
17ExprTuple25, 23
18Literal
19ExprTuple26, 24
20Literal
21ExprTuple25, 26
22Literal
23Literal
24Literal
25Variable
26Variable