| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | , ⊢  |
| | : , : , :  |
| 1 | reference | 9 | ⊢  |
| 2 | instantiation | 13, 4 | , ⊢  |
| | : , : , :  |
| 3 | instantiation | 5, 6, 7, 8 | , ⊢  |
| | : , : , : , :  |
| 4 | instantiation | 9, 10, 11 | , ⊢  |
| | : , : , :  |
| 5 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 6 | instantiation | 13, 12 | , ⊢  |
| | : , : , :  |
| 7 | instantiation | 13, 14 | , ⊢  |
| | : , : , :  |
| 8 | instantiation | 15, 16, 45 | , ⊢  |
| | : , :  |
| 9 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 10 | instantiation | 22, 47, 46, 24, 17, 25, 27, 19, 28, 20 | , ⊢  |
| | : , : , : , : , : , : , :  |
| 11 | instantiation | 23, 46, 47, 18, 27, 19, 20, 28, 21* | , ⊢  |
| | : , : , : , : , : , :  |
| 12 | instantiation | 22, 46, 24, 25, 27, 29, 28 | , ⊢  |
| | : , : , : , : , : , : , :  |
| 13 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 14 | instantiation | 23, 24, 47, 46, 25, 26, 27, 28, 29 | , ⊢  |
| | : , : , : , : , : , :  |
| 15 | theorem | | ⊢  |
| | proveit.numbers.rounding.round_of_real_plus_int |
| 16 | instantiation | 30, 34, 35 | , ⊢  |
| | : , :  |
| 17 | instantiation | 33 | ⊢  |
| | : , :  |
| 18 | instantiation | 33 | ⊢  |
| | : , :  |
| 19 | instantiation | 48, 36, 31 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 48, 36, 32 | ⊢  |
| | : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.add_1_2 |
| 22 | theorem | | ⊢  |
| | proveit.numbers.addition.leftward_commutation |
| 23 | theorem | | ⊢  |
| | proveit.numbers.addition.association |
| 24 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 25 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 26 | instantiation | 33 | ⊢  |
| | : , :  |
| 27 | instantiation | 48, 36, 34 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 48, 36, 35 | ⊢  |
| | : , : , :  |
| 29 | instantiation | 48, 36, 37 | ⊢  |
| | : , : , :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 31 | instantiation | 48, 40, 38 | ⊢  |
| | : , : , :  |
| 32 | instantiation | 48, 40, 39 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 34 | assumption | | ⊢  |
| 35 | assumption | | ⊢  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 37 | instantiation | 48, 40, 41 | ⊢  |
| | : , : , :  |
| 38 | instantiation | 48, 44, 42 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 48, 44, 43 | ⊢  |
| | : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 41 | instantiation | 48, 44, 45 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 48, 49, 46 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 48, 49, 47 | ⊢  |
| | : , : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 45 | instantiation | 48, 49, 50 | ⊢  |
| | : , : , :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 48 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 49 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| *equality replacement requirements |