logo

Expression of type Lambda

from the theory of proveit.numbers.rounding

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, x, y
from proveit.logic import And, InSet
from proveit.numbers import Floor, Integer, LessEq, Real, greater_eq
In [2]:
# build up the expression from sub-expressions
expr = Lambda([x, y], Conditional(greater_eq(Floor(x), y), And(InSet(x, Real), InSet(y, Integer), LessEq(y, x))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x, y\right) \mapsto \left\{\left\lfloor x\right\rfloor \geq y \textrm{ if } x \in \mathbb{R} ,  y \in \mathbb{Z} ,  y \leq x\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple22, 21
2Conditionalvalue: 3
condition: 4
3Operationoperator: 17
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple21, 8
6Literal
7ExprTuple9, 10, 11
8Operationoperator: 12
operand: 22
9Operationoperator: 15
operands: 14
10Operationoperator: 15
operands: 16
11Operationoperator: 17
operands: 18
12Literal
13ExprTuple22
14ExprTuple22, 19
15Literal
16ExprTuple21, 20
17Literal
18ExprTuple21, 22
19Literal
20Literal
21Variable
22Variable