logo

Expression of type Lambda

from the theory of proveit.numbers.ordering

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, b, c
from proveit.logic import And, InSet
from proveit.numbers import Add, LessEq, Real, zero
In [2]:
# build up the expression from sub-expressions
expr = Lambda([a, b, c], Conditional(LessEq(Add(a, b), c), And(InSet(a, Real), InSet(b, Real), InSet(c, Real), LessEq(a, b), LessEq(c, zero))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a, b, c\right) \mapsto \left\{\left(a + b\right) \leq c \textrm{ if } a \in \mathbb{R} ,  b \in \mathbb{R} ,  c \in \mathbb{R} ,  a \leq b ,  c \leq 0\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple23, 24, 25
2Conditionalvalue: 3
condition: 4
3Operationoperator: 20
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 25
6Literal
7ExprTuple9, 10, 11, 12, 13
8Operationoperator: 14
operands: 19
9Operationoperator: 17
operands: 15
10Operationoperator: 17
operands: 16
11Operationoperator: 17
operands: 18
12Operationoperator: 20
operands: 19
13Operationoperator: 20
operands: 21
14Literal
15ExprTuple23, 22
16ExprTuple24, 22
17Literal
18ExprTuple25, 22
19ExprTuple23, 24
20Literal
21ExprTuple25, 26
22Literal
23Variable
24Variable
25Variable
26Literal