logo

Expression of type Lambda

from the theory of proveit.numbers.ordering

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, x, y
from proveit.logic import And, Equals, InSet, Not
from proveit.numbers import Less, LessEq, Real
In [2]:
# build up the expression from sub-expressions
expr = Lambda([x, y], Conditional(Equals(Not(Less(x, y)), LessEq(y, x)), And(InSet(x, Real), InSet(y, Real))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x, y\right) \mapsto \left\{(\lnot \left(x < y\right)) = \left(y \leq x\right) \textrm{ if } x \in \mathbb{R} ,  y \in \mathbb{R}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 22
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple10, 11
8Operationoperator: 12
operand: 19
9Operationoperator: 14
operands: 15
10Operationoperator: 17
operands: 16
11Operationoperator: 17
operands: 18
12Literal
13ExprTuple19
14Literal
15ExprTuple24, 23
16ExprTuple23, 20
17Literal
18ExprTuple24, 20
19Operationoperator: 21
operands: 22
20Literal
21Literal
22ExprTuple23, 24
23Variable
24Variable