logo

Expression of type Lambda

from the theory of proveit.numbers.ordering

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, n
from proveit.logic import Equals, InSet
from proveit.numbers import Max, Natural, zero
In [2]:
# build up the expression from sub-expressions
expr = Lambda(n, Conditional(Equals(Max(n, zero), n), InSet(n, Natural)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
n \mapsto \left\{{\rm Max}\left(n, 0\right) = n \textrm{ if } n \in \mathbb{N}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 13
body: 2
1ExprTuple13
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 13
7Literal
8ExprTuple13, 10
9Operationoperator: 11
operands: 12
10Literal
11Literal
12ExprTuple13, 14
13Variable
14Literal