logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1reference27  ⊢  
2instantiation4, 5  ⊢  
  : , : , :
3instantiation6, 7, 69, 8, 9*  ⊢  
  : , : , : , :
4axiom  ⊢  
 proveit.logic.equality.substitution
5instantiation33, 10  ⊢  
  :
6theorem  ⊢  
 proveit.numbers.addition.rational_pair_addition
7instantiation70, 71, 11  ⊢  
  : , : , :
8instantiation70, 71, 12  ⊢  
  : , : , :
9instantiation27, 13, 14  ⊢  
  : , : , :
10instantiation70, 59, 15  ⊢  
  : , : , :
11theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
12theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
13instantiation38, 72, 16, 17, 18, 19  ⊢  
  : , : , : , :
14instantiation20, 21, 22, 52, 23*, 24*, 25*  ⊢  
  : , : , :
15instantiation70, 65, 26  ⊢  
  : , : , :
16instantiation50  ⊢  
  : , :
17instantiation50  ⊢  
  : , :
18instantiation27, 28, 29  ⊢  
  : , : , :
19theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_2_2
20theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
21instantiation70, 31, 30  ⊢  
  : , : , :
22instantiation70, 31, 32  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_4_2
24instantiation33, 34  ⊢  
  :
25instantiation35, 52  ⊢  
  :
26instantiation70, 36, 37  ⊢  
  : , : , :
27axiom  ⊢  
 proveit.logic.equality.equals_transitivity
28instantiation38, 72, 39, 40, 41, 42  ⊢  
  : , : , : , :
29theorem  ⊢  
 proveit.numbers.numerals.decimals.add_2_6
30instantiation70, 44, 43  ⊢  
  : , : , :
31theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
32instantiation70, 44, 45  ⊢  
  : , : , :
33theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
34instantiation70, 59, 46  ⊢  
  : , : , :
35theorem  ⊢  
 proveit.numbers.division.frac_one_denom
36theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational
37instantiation47, 48, 49  ⊢  
  : , :
38axiom  ⊢  
 proveit.core_expr_types.operations.operands_substitution
39instantiation50  ⊢  
  : , :
40instantiation50  ⊢  
  : , :
41instantiation51, 52  ⊢  
  :
42theorem  ⊢  
 proveit.numbers.numerals.decimals.mult_2_3
43instantiation70, 54, 53  ⊢  
  : , : , :
44theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
45instantiation70, 54, 55  ⊢  
  : , : , :
46instantiation70, 65, 56  ⊢  
  : , : , :
47theorem  ⊢  
 proveit.numbers.division.div_rational_pos_closure
48instantiation70, 57, 63  ⊢  
  : , : , :
49instantiation70, 57, 58  ⊢  
  : , : , :
50theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
51theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
52instantiation70, 59, 60  ⊢  
  : , : , :
53instantiation70, 62, 61  ⊢  
  : , : , :
54theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
55instantiation70, 62, 63  ⊢  
  : , : , :
56instantiation70, 68, 64  ⊢  
  : , : , :
57theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
58theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
59theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
60instantiation70, 65, 66  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat4
62theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
63theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
64instantiation70, 71, 67  ⊢  
  : , : , :
65theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
66instantiation70, 68, 69  ⊢  
  : , : , :
67theorem  ⊢  
 proveit.numbers.numerals.decimals.nat4
68theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
69instantiation70, 71, 72  ⊢  
  : , : , :
70theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
71theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
72theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
*equality replacement requirements