\left(\left(a_{1}, a_{2}, \ldots, a_{m}, b, c_{1}, c_{2}, \ldots, c_{n}, d_{1}, d_{2}, \ldots, d_{k}\right) \mapsto \left\{\texttt{\#}(a_{1}, a_{2}, \ldots, a_{m} ~ b, b, ..\left(n - 3\right) \times.., b ~ d_{1}, d_{2}, \ldots, d_{k}) = \texttt{\#}(a_{1}, a_{2}, \ldots, a_{m} ~ c_{1}, c_{2}, \ldots, c_{n} ~ d_{1}, d_{2}, \ldots, d_{k}) \textrm{ if } \left(a_{1} \in \mathbb{N}^{\leq 9}\right) , \left(a_{2} \in \mathbb{N}^{\leq 9}\right) , \ldots , \left(a_{m} \in \mathbb{N}^{\leq 9}\right) , b \in \mathbb{N}^{\leq 9}, \left(c_{1} \in \mathbb{N}^{\leq 9}\right) , \left(c_{2} \in \mathbb{N}^{\leq 9}\right) , \ldots , \left(c_{n} \in \mathbb{N}^{\leq 9}\right), \left(d_{1} \in \mathbb{N}^{\leq 9}\right) , \left(d_{2} \in \mathbb{N}^{\leq 9}\right) , \ldots , \left(d_{k} \in \mathbb{N}^{\leq 9}\right) , \left(b, b, ..\left(n - 3\right) \times.., b\right) = \left(c_{1}, c_{2}, \ldots, c_{n}\right)\right..\right)