logo

Expression of type ExprTuple

from the theory of proveit.numbers.numerals.decimals

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, ExprTuple, Lambda, Variable, x
from proveit.logic import Equals
from proveit.numbers import one, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(x, Equals([ExprRange(Variable("_a", latex_format = r"{_{-}a}"), x, one, two)], [x, x])))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x \mapsto \left(\left(x, ..0 \times.., x\right) = \left(x, x\right)\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 13
body: 3
2ExprTuple13
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6ExprTuple8
7ExprTuple13, 13
8ExprRangelambda_map: 9
start_index: 10
end_index: 11
9Lambdaparameter: 14
body: 13
10Literal
11Literal
12ExprTuple14
13Variable
14Variable