logo

Expression of type Lambda

from the theory of proveit.numbers.numerals.decimals

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Lambda, n
from proveit.logic import And, Equals, InSet
from proveit.numbers import Digits, LessEq, Natural, nine
In [2]:
# build up the expression from sub-expressions
expr = Lambda(n, Equals(InSet(n, Digits), And(InSet(n, Natural), LessEq(n, nine))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
n \mapsto \left(\left(n \in \mathbb{N}^{\leq 9}\right) = \left(\left(n \in \mathbb{N}\right) \land \left(n \leq 9\right)\right)\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 18
body: 2
1ExprTuple18
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Operationoperator: 13
operands: 7
6Operationoperator: 8
operands: 9
7ExprTuple18, 10
8Literal
9ExprTuple11, 12
10Literal
11Operationoperator: 13
operands: 14
12Operationoperator: 15
operands: 16
13Literal
14ExprTuple18, 17
15Literal
16ExprTuple18, 19
17Literal
18Variable
19Literal