logo

Expression of type ExprTuple

from the theory of proveit.numbers.number_sets.rational_numbers

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, a, b
from proveit.logic import And, InSet, NotEquals
from proveit.numbers import Integer, frac, zero
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([a, b], Conditional(frac(a, b), And(InSet(a, Integer), InSet(b, Integer), NotEquals(b, zero)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a, b\right) \mapsto \left\{\frac{a}{b} \textrm{ if } a \in \mathbb{Z} ,  b \in \mathbb{Z} ,  b \neq 0\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 6
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple17, 19
7Literal
8ExprTuple9, 10, 11
9Operationoperator: 13
operands: 12
10Operationoperator: 13
operands: 14
11Operationoperator: 15
operands: 16
12ExprTuple17, 18
13Literal
14ExprTuple19, 18
15Literal
16ExprTuple19, 20
17Variable
18Literal
19Variable
20Literal