logo

Expression of type Lambda

from the theory of proveit.numbers.number_sets.rational_numbers

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, q
from proveit.logic import And, InSet
from proveit.numbers import Rational, greater, zero
In [2]:
# build up the expression from sub-expressions
expr = Lambda(q, Conditional(q, And(InSet(q, Rational), greater(q, zero))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
q \mapsto \left\{q \textrm{ if } q \in \mathbb{Q} ,  q > 0\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 14
body: 2
1ExprTuple14
2Conditionalvalue: 14
condition: 3
3Operationoperator: 4
operands: 5
4Literal
5ExprTuple6, 7
6Operationoperator: 8
operands: 9
7Operationoperator: 10
operands: 11
8Literal
9ExprTuple14, 12
10Literal
11ExprTuple13, 14
12Literal
13Literal
14Variable