logo

Expression of type ExprTuple

from the theory of proveit.numbers.number_sets.natural_numbers

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, n
from proveit.logic import InSet
from proveit.numbers import Add, Natural, one
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(n, Conditional(InSet(Add(n, one), Natural), InSet(n, Natural))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(n \mapsto \left\{\left(n + 1\right) \in \mathbb{N} \textrm{ if } n \in \mathbb{N}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 13
body: 3
2ExprTuple13
3Conditionalvalue: 4
condition: 5
4Operationoperator: 7
operands: 6
5Operationoperator: 7
operands: 8
6ExprTuple9, 10
7Literal
8ExprTuple13, 10
9Operationoperator: 11
operands: 12
10Literal
11Literal
12ExprTuple13, 14
13Variable
14Literal