logo

Expression of type Lambda

from the theory of proveit.numbers.number_sets.complex_numbers

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, b
from proveit.logic import And, InSet
from proveit.numbers import Add, Complex, Mult, Real, i
In [2]:
# build up the expression from sub-expressions
expr = Lambda([a, b], Conditional(InSet(Add(a, Mult(i, b)), Complex), And(InSet(a, Real), InSet(b, Real))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a, b\right) \mapsto \left\{\left(a + \left(\mathsf{i} \cdot b\right)\right) \in \mathbb{C} \textrm{ if } a \in \mathbb{R} ,  b \in \mathbb{R}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple18, 23
2Conditionalvalue: 3
condition: 4
3Operationoperator: 15
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple10, 11
8Operationoperator: 12
operands: 13
9Literal
10Operationoperator: 15
operands: 14
11Operationoperator: 15
operands: 16
12Literal
13ExprTuple18, 17
14ExprTuple18, 19
15Literal
16ExprTuple23, 19
17Operationoperator: 20
operands: 21
18Variable
19Literal
20Literal
21ExprTuple22, 23
22Literal
23Variable