logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Function, Lambda, Q, f
from proveit.core_expr_types import b_1_to_j
from proveit.logic import InSet
from proveit.numbers import Complex
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [b_1_to_j]
expr = ExprTuple(Lambda(sub_expr1, Conditional(InSet(Function(f, sub_expr1), Complex), Function(Q, sub_expr1))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(b_{1}, b_{2}, \ldots, b_{j}\right) \mapsto \left\{f\left(b_{1}, b_{2}, \ldots, b_{j}\right) \in \mathbb{C} \textrm{ if } Q\left(b_{1}, b_{2}, \ldots, b_{j}\right)\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 11
body: 2
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 11
5Literal
6ExprTuple8, 9
7Variable
8Operationoperator: 10
operands: 11
9Literal
10Variable
11ExprTuple12
12ExprRangelambda_map: 13
start_index: 14
end_index: 15
13Lambdaparameter: 19
body: 16
14Literal
15Variable
16IndexedVarvariable: 17
index: 19
17Variable
18ExprTuple19
19Variable