logo

Expression of type Equals

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import x, y
from proveit.core_expr_types import a_1_to_i, b_1_to_j
from proveit.logic import Equals
from proveit.numbers import Mult, subtract
In [2]:
# build up the expression from sub-expressions
expr = Equals(Mult(a_1_to_i, subtract(x, y), b_1_to_j), subtract(Mult(a_1_to_i, x, b_1_to_j), Mult(a_1_to_i, y, b_1_to_j))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot \left(x - y\right)\cdot b_{1} \cdot  b_{2} \cdot  \ldots \cdot  b_{j}\right) =  \\ \left(\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot x\cdot b_{1} \cdot  b_{2} \cdot  \ldots \cdot  b_{j}\right) - \left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot y\cdot b_{1} \cdot  b_{2} \cdot  \ldots \cdot  b_{j}\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 19
operands: 5
4Operationoperator: 10
operands: 6
5ExprTuple21, 7, 23
6ExprTuple8, 9
7Operationoperator: 10
operands: 11
8Operationoperator: 19
operands: 12
9Operationoperator: 17
operand: 16
10Literal
11ExprTuple15, 14
12ExprTuple21, 15, 23
13ExprTuple16
14Operationoperator: 17
operand: 22
15Variable
16Operationoperator: 19
operands: 20
17Literal
18ExprTuple22
19Literal
20ExprTuple21, 22, 23
21ExprRangelambda_map: 24
start_index: 27
end_index: 25
22Variable
23ExprRangelambda_map: 26
start_index: 27
end_index: 28
24Lambdaparameter: 34
body: 29
25Variable
26Lambdaparameter: 34
body: 30
27Literal
28Variable
29IndexedVarvariable: 31
index: 34
30IndexedVarvariable: 32
index: 34
31Variable
32Variable
33ExprTuple34
34Variable