logo

Expression of type Lambda

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, x, y
from proveit.logic import Equals
from proveit.numbers import Mult
In [2]:
# build up the expression from sub-expressions
expr = Lambda([a, x, y], Conditional(Equals(Mult(x, a), Mult(y, a)), Equals(x, y)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a, x, y\right) \mapsto \left\{\left(x \cdot a\right) = \left(y \cdot a\right) \textrm{ if } x = y\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple15, 13, 14
2Conditionalvalue: 3
condition: 4
3Operationoperator: 6
operands: 5
4Operationoperator: 6
operands: 7
5ExprTuple8, 9
6Literal
7ExprTuple13, 14
8Operationoperator: 11
operands: 10
9Operationoperator: 11
operands: 12
10ExprTuple13, 15
11Literal
12ExprTuple14, 15
13Variable
14Variable
15Variable