logo

Expression of type Lambda

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, b, i, j
from proveit.core_expr_types import a_1_to_i, c_1_to_j
from proveit.logic import And, Equals, Forall, InSet
from proveit.numbers import Complex, Mult, Natural, Neg
In [2]:
# build up the expression from sub-expressions
expr = Lambda([i, j], Conditional(Forall(instance_param_or_params = [a_1_to_i, b, c_1_to_j], instance_expr = Equals(Neg(Mult(a_1_to_i, Neg(b), c_1_to_j)), Mult(a_1_to_i, b, c_1_to_j)), domain = Complex), And(InSet(i, Natural), InSet(j, Natural))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(i, j\right) \mapsto \left\{\forall_{a_{1}, a_{2}, \ldots, a_{i}, b, c_{1}, c_{2}, \ldots, c_{j} \in \mathbb{C}}~\left(\left(-\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot \left(-b\right)\cdot c_{1} \cdot  c_{2} \cdot  \ldots \cdot  c_{j}\right)\right) = \left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot b\cdot c_{1} \cdot  c_{2} \cdot  \ldots \cdot  c_{j}\right)\right) \textrm{ if } i \in \mathbb{N} ,  j \in \mathbb{N}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple44, 49
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operand: 8
4Operationoperator: 19
operands: 7
5Literal
6ExprTuple8
7ExprTuple9, 10
8Lambdaparameters: 27
body: 11
9Operationoperator: 37
operands: 12
10Operationoperator: 37
operands: 13
11Conditionalvalue: 14
condition: 15
12ExprTuple44, 16
13ExprTuple49, 16
14Operationoperator: 17
operands: 18
15Operationoperator: 19
operands: 20
16Literal
17Literal
18ExprTuple21, 22
19Literal
20ExprTuple23, 24, 25
21Operationoperator: 45
operand: 31
22Operationoperator: 34
operands: 27
23ExprRangelambda_map: 28
start_index: 48
end_index: 44
24Operationoperator: 37
operands: 29
25ExprRangelambda_map: 30
start_index: 48
end_index: 49
26ExprTuple31
27ExprTuple39, 51, 41
28Lambdaparameter: 56
body: 32
29ExprTuple51, 42
30Lambdaparameter: 56
body: 33
31Operationoperator: 34
operands: 35
32Operationoperator: 37
operands: 36
33Operationoperator: 37
operands: 38
34Literal
35ExprTuple39, 40, 41
36ExprTuple50, 42
37Literal
38ExprTuple52, 42
39ExprRangelambda_map: 43
start_index: 48
end_index: 44
40Operationoperator: 45
operand: 51
41ExprRangelambda_map: 47
start_index: 48
end_index: 49
42Literal
43Lambdaparameter: 56
body: 50
44Variable
45Literal
46ExprTuple51
47Lambdaparameter: 56
body: 52
48Literal
49Variable
50IndexedVarvariable: 53
index: 56
51Variable
52IndexedVarvariable: 54
index: 56
53Variable
54Variable
55ExprTuple56
56Variable