logo

Expression of type Lambda

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, b, i, j
from proveit.core_expr_types import a_1_to_i, c_1_to_j
from proveit.logic import And, Equals, Forall, InSet
from proveit.numbers import Complex, Mult, Natural, Neg
In [2]:
# build up the expression from sub-expressions
expr = Lambda([i, j], Conditional(Forall(instance_param_or_params = [a_1_to_i, b, c_1_to_j], instance_expr = Equals(Mult(a_1_to_i, Neg(b), c_1_to_j), Neg(Mult(a_1_to_i, b, c_1_to_j))), domain = Complex), And(InSet(i, Natural), InSet(j, Natural))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(i, j\right) \mapsto \left\{\forall_{a_{1}, a_{2}, \ldots, a_{i}, b, c_{1}, c_{2}, \ldots, c_{j} \in \mathbb{C}}~\left(\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot \left(-b\right)\cdot c_{1} \cdot  c_{2} \cdot  \ldots \cdot  c_{j}\right) = \left(-\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot b\cdot c_{1} \cdot  c_{2} \cdot  \ldots \cdot  c_{j}\right)\right)\right) \textrm{ if } i \in \mathbb{N} ,  j \in \mathbb{N}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple47, 50
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operand: 8
4Operationoperator: 19
operands: 7
5Literal
6ExprTuple8
7ExprTuple9, 10
8Lambdaparameters: 38
body: 11
9Operationoperator: 40
operands: 12
10Operationoperator: 40
operands: 13
11Conditionalvalue: 14
condition: 15
12ExprTuple47, 16
13ExprTuple50, 16
14Operationoperator: 17
operands: 18
15Operationoperator: 19
operands: 20
16Literal
17Literal
18ExprTuple21, 22
19Literal
20ExprTuple23, 24, 25
21Operationoperator: 37
operands: 26
22Operationoperator: 35
operand: 32
23ExprRangelambda_map: 28
start_index: 49
end_index: 47
24Operationoperator: 40
operands: 29
25ExprRangelambda_map: 30
start_index: 49
end_index: 50
26ExprTuple42, 31, 44
27ExprTuple32
28Lambdaparameter: 56
body: 33
29ExprTuple43, 45
30Lambdaparameter: 56
body: 34
31Operationoperator: 35
operand: 43
32Operationoperator: 37
operands: 38
33Operationoperator: 40
operands: 39
34Operationoperator: 40
operands: 41
35Literal
36ExprTuple43
37Literal
38ExprTuple42, 43, 44
39ExprTuple51, 45
40Literal
41ExprTuple52, 45
42ExprRangelambda_map: 46
start_index: 49
end_index: 47
43Variable
44ExprRangelambda_map: 48
start_index: 49
end_index: 50
45Literal
46Lambdaparameter: 56
body: 51
47Variable
48Lambdaparameter: 56
body: 52
49Literal
50Variable
51IndexedVarvariable: 53
index: 56
52IndexedVarvariable: 54
index: 56
53Variable
54Variable
55ExprTuple56
56Variable