logo

Expression of type Equals

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprRange, IndexedVar, Variable, b, j
from proveit.core_expr_types import a_1_to_i, b_1_to_j, c_1_to_k
from proveit.logic import Equals
from proveit.numbers import Abs, Add, Mult, one
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_b", latex_format = r"{_{-}b}")
expr = Equals(Mult(a_1_to_i, Abs(Add(b_1_to_j)), c_1_to_k), Abs(Add(ExprRange(sub_expr1, Mult(a_1_to_i, IndexedVar(b, sub_expr1), c_1_to_k), one, j)))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot \left|b_{1} +  b_{2} +  \ldots +  b_{j}\right|\cdot c_{1} \cdot  c_{2} \cdot  \ldots \cdot  c_{k}\right) =  \\ \left|\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot b_{1}\cdot c_{1} \cdot  c_{2} \cdot  \ldots \cdot  c_{k}\right) +  \left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot b_{2}\cdot c_{1} \cdot  c_{2} \cdot  \ldots \cdot  c_{k}\right) +  \ldots +  \left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{i} \cdot b_{j}\cdot c_{1} \cdot  c_{2} \cdot  \ldots \cdot  c_{k}\right)\right| \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 21
operands: 5
4Operationoperator: 9
operand: 8
5ExprTuple24, 7, 26
6ExprTuple8
7Operationoperator: 9
operand: 12
8Operationoperator: 14
operands: 11
9Literal
10ExprTuple12
11ExprTuple13
12Operationoperator: 14
operands: 15
13ExprRangelambda_map: 16
start_index: 32
end_index: 20
14Literal
15ExprTuple17
16Lambdaparameter: 35
body: 18
17ExprRangelambda_map: 19
start_index: 32
end_index: 20
18Operationoperator: 21
operands: 22
19Lambdaparameter: 40
body: 23
20Variable
21Literal
22ExprTuple24, 25, 26
23IndexedVarvariable: 29
index: 40
24ExprRangelambda_map: 27
start_index: 32
end_index: 28
25IndexedVarvariable: 29
index: 35
26ExprRangelambda_map: 31
start_index: 32
end_index: 33
27Lambdaparameter: 40
body: 34
28Variable
29Variable
30ExprTuple35
31Lambdaparameter: 40
body: 36
32Literal
33Variable
34IndexedVarvariable: 37
index: 40
35Variable
36IndexedVarvariable: 38
index: 40
37Variable
38Variable
39ExprTuple40
40Variable