logo

Expression of type Neg

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import x, y
from proveit.numbers import Mult, Neg
In [2]:
# build up the expression from sub-expressions
expr = Neg(Mult(x, Neg(y)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
-\left(x \cdot \left(-y\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
notation_in_addWhen contained in an Add, use 'subtraction' or 'explicit_negation': For example, 'a - b' versus 'a + (-b)'.subtractionsubtraction('with_subtraction_notation', 'without_subtraction_notation')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 7
operand: 2
1ExprTuple2
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6
5Variable
6Operationoperator: 7
operand: 9
7Literal
8ExprTuple9
9Variable