logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Mult, Neg, five, four, frac, six, three, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Neg(Mult(Neg(frac(two, three)), frac(six, five))), frac(four, five))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(-\left(\left(-\frac{2}{3}\right) \cdot \frac{6}{5}\right), \frac{4}{5}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 11
operand: 5
2Operationoperator: 17
operands: 4
3ExprTuple5
4ExprTuple6, 16
5Operationoperator: 7
operands: 8
6Literal
7Literal
8ExprTuple9, 10
9Operationoperator: 11
operand: 14
10Operationoperator: 17
operands: 13
11Literal
12ExprTuple14
13ExprTuple15, 16
14Operationoperator: 17
operands: 18
15Literal
16Literal
17Literal
18ExprTuple19, 20
19Literal
20Literal