logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, , , , ,  ⊢  
  : , : , :
1axiom  ⊢  
 proveit.logic.equality.equals_transitivity
2instantiation4, 9, 20, 5, 6, 7, 11, 21, 12, 13, 23, , , , ,  ⊢  
  : , : , : , : , : , : , :
3instantiation8, 20, 9, 10, 11, 21, 12, 23, 13, 14*, , , , ,  ⊢  
  : , : , : , : , : , :
4theorem  ⊢  
 proveit.numbers.multiplication.leftward_commutation
5axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
6instantiation15  ⊢  
  : , : , :
7theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
8theorem  ⊢  
 proveit.numbers.multiplication.association
9theorem  ⊢  
 proveit.numbers.numerals.decimals.nat3
10instantiation15  ⊢  
  : , : , :
11instantiation32, 27, 16  ⊢  
  : , : , :
12instantiation17, 22, 18,  ⊢  
  : , :
13assumption  ⊢  
14instantiation19, 20, 21, 22, 26, 23, , ,  ⊢  
  : , : , : , : , : , :
15theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_3_typical_eq
16instantiation32, 30, 24  ⊢  
  : , : , :
17theorem  ⊢  
 proveit.numbers.addition.add_complex_closure_bin
18instantiation25, 26  ⊢  
  :
19theorem  ⊢  
 proveit.numbers.multiplication.distribute_through_subtract
20theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
21instantiation32, 27, 28  ⊢  
  : , : , :
22assumption  ⊢  
23assumption  ⊢  
24instantiation32, 33, 29  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.numbers.negation.complex_closure
26assumption  ⊢  
27theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
28instantiation32, 30, 31  ⊢  
  : , : , :
29assumption  ⊢  
30theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
31instantiation32, 33, 34  ⊢  
  : , : , :
32theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
33theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
34assumption  ⊢  
*equality replacement requirements