logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, k, theta
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Exp(a, k)
sub_expr2 = Add(a, b)
sub_expr3 = Exp(e, Mult(two, pi, i, b))
expr = ExprTuple(Mult(sub_expr1, Exp(e, Mult(two, pi, i, theta, k)), Exp(sub_expr2, k), sub_expr3), Mult(sub_expr1, Exp(Mult(Exp(e, Mult(two, pi, i, theta)), sub_expr2), k), sub_expr3))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta \cdot k} \cdot \left(a + b\right)^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}, a^{k} \cdot \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta} \cdot \left(a + b\right)\right)^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 32
operands: 3
2Operationoperator: 32
operands: 4
3ExprTuple7, 5, 6, 9
4ExprTuple7, 8, 9
5Operationoperator: 24
operands: 10
6Operationoperator: 24
operands: 11
7Operationoperator: 24
operands: 12
8Operationoperator: 24
operands: 13
9Operationoperator: 24
operands: 14
10ExprTuple28, 15
11ExprTuple23, 21
12ExprTuple30, 21
13ExprTuple16, 21
14ExprTuple28, 17
15Operationoperator: 32
operands: 18
16Operationoperator: 32
operands: 19
17Operationoperator: 32
operands: 20
18ExprTuple34, 35, 36, 37, 21
19ExprTuple22, 23
20ExprTuple34, 35, 36, 31
21Variable
22Operationoperator: 24
operands: 25
23Operationoperator: 26
operands: 27
24Literal
25ExprTuple28, 29
26Literal
27ExprTuple30, 31
28Literal
29Operationoperator: 32
operands: 33
30Variable
31Variable
32Literal
33ExprTuple34, 35, 36, 37
34Literal
35Literal
36Literal
37Variable