logo

Expression of type Mult

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import a, b, c, d
from proveit.numbers import Exp, Mult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Exp(a, b)
expr = Mult(sub_expr1, Mult(Exp(a, c), sub_expr1, Exp(a, d)), b)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
a^{b} \cdot \left(a^{c} \cdot a^{b} \cdot a^{d}\right) \cdot b
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 3
operands: 1
1ExprTuple6, 2, 13
2Operationoperator: 3
operands: 4
3Literal
4ExprTuple5, 6, 7
5Operationoperator: 10
operands: 8
6Operationoperator: 10
operands: 9
7Operationoperator: 10
operands: 11
8ExprTuple14, 12
9ExprTuple14, 13
10Literal
11ExprTuple14, 15
12Variable
13Variable
14Variable
15Variable