logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, delta, k, theta
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Add(a, b)
sub_expr2 = Mult(two, pi, i, delta)
sub_expr3 = Mult(two, pi, i, theta)
sub_expr4 = Mult(two, pi, i, b)
expr = ExprTuple(Mult(sub_expr1, Exp(Mult(Exp(e, sub_expr2), Exp(e, sub_expr3)), k), Exp(e, sub_expr4)), Mult(sub_expr1, Exp(e, Add(Mult(Add(sub_expr2, sub_expr3), k), sub_expr4))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\left(a + b\right) \cdot \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \delta} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta}\right)^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}, \left(a + b\right) \cdot \mathsf{e}^{\left(\left(\left(2 \cdot \pi \cdot \mathsf{i} \cdot \delta\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot \theta\right)\right) \cdot k\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot b\right)}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 36
operands: 3
2Operationoperator: 36
operands: 4
3ExprTuple7, 5, 6
4ExprTuple7, 8
5Operationoperator: 23
operands: 9
6Operationoperator: 23
operands: 10
7Operationoperator: 31
operands: 11
8Operationoperator: 23
operands: 12
9ExprTuple13, 29
10ExprTuple27, 21
11ExprTuple14, 30
12ExprTuple27, 15
13Operationoperator: 36
operands: 16
14Variable
15Operationoperator: 31
operands: 17
16ExprTuple18, 19
17ExprTuple20, 21
18Operationoperator: 23
operands: 22
19Operationoperator: 23
operands: 24
20Operationoperator: 36
operands: 25
21Operationoperator: 36
operands: 26
22ExprTuple27, 33
23Literal
24ExprTuple27, 34
25ExprTuple28, 29
26ExprTuple39, 40, 41, 30
27Literal
28Operationoperator: 31
operands: 32
29Variable
30Variable
31Literal
32ExprTuple33, 34
33Operationoperator: 36
operands: 35
34Operationoperator: 36
operands: 37
35ExprTuple39, 40, 41, 38
36Literal
37ExprTuple39, 40, 41, 42
38Variable
39Literal
40Literal
41Literal
42Variable