logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, w, x, y, z
from proveit.numbers import Add, Mult
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Add(w, y)
expr = ExprTuple(Mult(x, y, sub_expr1, z, w), Mult(x, y, sub_expr1, w, z))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x \cdot y \cdot \left(w + y\right) \cdot z \cdot w, x \cdot y \cdot \left(w + y\right) \cdot w \cdot z\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 4
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple6, 12, 7, 8, 11
4Literal
5ExprTuple6, 12, 7, 11, 8
6Variable
7Operationoperator: 9
operands: 10
8Variable
9Literal
10ExprTuple11, 12
11Variable
12Variable