logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, b, delta, k, theta
from proveit.numbers import Add, Exp, Mult, e, i, pi, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Mult(two, pi, i, a)
sub_expr2 = Mult(two, pi, i, delta)
sub_expr3 = Mult(two, pi, i, theta)
sub_expr4 = Mult(two, pi, i, b)
expr = ExprTuple(Mult(Exp(e, sub_expr1), Exp(Mult(Exp(e, sub_expr2), Exp(e, sub_expr3)), k), Exp(e, sub_expr4)), Exp(e, Add(sub_expr1, Mult(Add(sub_expr2, sub_expr3), k), sub_expr4)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot a} \cdot \left(\mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \delta} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot \theta}\right)^{k} \cdot \mathsf{e}^{2 \cdot \pi \cdot \mathsf{i} \cdot b}, \mathsf{e}^{\left(2 \cdot \pi \cdot \mathsf{i} \cdot a\right) + \left(\left(\left(2 \cdot \pi \cdot \mathsf{i} \cdot \delta\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot \theta\right)\right) \cdot k\right) + \left(2 \cdot \pi \cdot \mathsf{i} \cdot b\right)}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 36
operands: 3
2Operationoperator: 28
operands: 4
3ExprTuple5, 6, 7
4ExprTuple32, 8
5Operationoperator: 28
operands: 9
6Operationoperator: 28
operands: 10
7Operationoperator: 28
operands: 11
8Operationoperator: 30
operands: 12
9ExprTuple32, 14
10ExprTuple13, 25
11ExprTuple32, 16
12ExprTuple14, 15, 16
13Operationoperator: 36
operands: 17
14Operationoperator: 36
operands: 18
15Operationoperator: 36
operands: 19
16Operationoperator: 36
operands: 20
17ExprTuple21, 22
18ExprTuple39, 40, 41, 23
19ExprTuple24, 25
20ExprTuple39, 40, 41, 26
21Operationoperator: 28
operands: 27
22Operationoperator: 28
operands: 29
23Variable
24Operationoperator: 30
operands: 31
25Variable
26Variable
27ExprTuple32, 33
28Literal
29ExprTuple32, 34
30Literal
31ExprTuple33, 34
32Literal
33Operationoperator: 36
operands: 35
34Operationoperator: 36
operands: 37
35ExprTuple39, 40, 41, 38
36Literal
37ExprTuple39, 40, 41, 42
38Variable
39Literal
40Literal
41Literal
42Variable