logo

Expression of type ExprTuple

from the theory of proveit.numbers.multiplication

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, b, c, d, x, y
from proveit.numbers import Mult, Neg
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Mult(d, x, b, c), Neg(Mult(d, y, b, c)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(d \cdot x \cdot b \cdot c, -\left(d \cdot y \cdot b \cdot c\right)\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 8
operands: 3
2Operationoperator: 4
operand: 7
3ExprTuple10, 6, 12, 13
4Literal
5ExprTuple7
6Variable
7Operationoperator: 8
operands: 9
8Literal
9ExprTuple10, 11, 12, 13
10Variable
11Variable
12Variable
13Variable