logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, , ,  ⊢  
  : , : , :
1reference42  ⊢  
2instantiation4, 5, 6, 65, 7, 8, 9, 58, 10, , ,  ⊢  
  : , : , : , : , : , :
3instantiation50, 11, ,  ⊢  
  : , : , :
4theorem  ⊢  
 proveit.numbers.multiplication.association
5axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
6theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
7theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
8instantiation12  ⊢  
  : , :
9instantiation13, 37, 58, 34, ,  ⊢  
  : , :
10instantiation63, 61, 14  ⊢  
  : , : , :
11instantiation17, 15, 16, ,  ⊢  
  : , : , :
12theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
13theorem  ⊢  
 proveit.numbers.division.div_complex_closure
14assumption  ⊢  
15instantiation17, 18, 19, ,  ⊢  
  : , : , :
16instantiation20, 21, 22, 23  ⊢  
  : , : , : , :
17theorem  ⊢  
 proveit.logic.equality.sub_right_side_into
18instantiation24, 37, 38, 25, 26, ,  ⊢  
  : , : , : , : , :
19instantiation42, 27, 28  ⊢  
  : , : , :
20theorem  ⊢  
 proveit.logic.equality.four_chain_transitivity
21instantiation50, 29  ⊢  
  : , : , :
22instantiation50, 30  ⊢  
  : , : , :
23instantiation57, 37  ⊢  
  :
24theorem  ⊢  
 proveit.numbers.division.mult_frac_cancel_denom_left
25instantiation63, 31, 32  ⊢  
  : , : , :
26instantiation33, 58, 34,  ⊢  
  :
27instantiation50, 35  ⊢  
  : , : , :
28instantiation50, 36  ⊢  
  : , : , :
29instantiation52, 37  ⊢  
  :
30instantiation52, 38  ⊢  
  :
31theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
32instantiation63, 39, 40  ⊢  
  : , : , :
33theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero
34assumption  ⊢  
35instantiation50, 41  ⊢  
  : , : , :
36instantiation42, 43, 44  ⊢  
  : , : , :
37instantiation63, 61, 45  ⊢  
  : , : , :
38instantiation63, 61, 46  ⊢  
  : , : , :
39theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
40instantiation63, 47, 48  ⊢  
  : , : , :
41instantiation49, 58  ⊢  
  :
42axiom  ⊢  
 proveit.logic.equality.equals_transitivity
43instantiation50, 51  ⊢  
  : , : , :
44instantiation52, 58  ⊢  
  :
45assumption  ⊢  
46instantiation63, 53, 54  ⊢  
  : , : , :
47theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
48instantiation63, 55, 56  ⊢  
  : , : , :
49theorem  ⊢  
 proveit.numbers.multiplication.elim_one_left
50axiom  ⊢  
 proveit.logic.equality.substitution
51instantiation57, 58  ⊢  
  :
52theorem  ⊢  
 proveit.numbers.division.frac_one_denom
53theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
54instantiation63, 59, 60  ⊢  
  : , : , :
55theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
56theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
57theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
58instantiation63, 61, 62  ⊢  
  : , : , :
59theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
60instantiation63, 64, 65  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
62assumption  ⊢  
63theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
64theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
65theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1