logo

Expression of type Lambda

from the theory of proveit.numbers.modular

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, L, Lambda, x
from proveit.logic import Equals, Forall, InSet
from proveit.numbers import IntervalCO, Mod, RealPos, zero
In [2]:
# build up the expression from sub-expressions
expr = Lambda(L, Conditional(Forall(instance_param_or_params = [x], instance_expr = Equals(Mod(x, L), x), domain = IntervalCO(zero, L)), InSet(L, RealPos)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
L \mapsto \left\{\forall_{x \in \left[0,L\right)}~\left(\left(x ~\textup{mod}~ L\right) = x\right) \textrm{ if } L \in \mathbb{R}^+\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 26
body: 2
1ExprTuple26
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operand: 8
4Operationoperator: 16
operands: 7
5Literal
6ExprTuple8
7ExprTuple26, 9
8Lambdaparameter: 24
body: 11
9Literal
10ExprTuple24
11Conditionalvalue: 12
condition: 13
12Operationoperator: 14
operands: 15
13Operationoperator: 16
operands: 17
14Literal
15ExprTuple18, 24
16Literal
17ExprTuple24, 19
18Operationoperator: 20
operands: 21
19Operationoperator: 22
operands: 23
20Literal
21ExprTuple24, 26
22Literal
23ExprTuple25, 26
24Variable
25Literal
26Variable