logo

Expression of type Lambda

from the theory of proveit.numbers.modular

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, b, q
from proveit.logic import Equals, InSet
from proveit.numbers import Add, Integer, Mod, Mult
In [2]:
# build up the expression from sub-expressions
expr = Lambda(q, Conditional(Equals(a, Add(Mult(q, b), Mod(a, b))), InSet(q, Integer)))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
q \mapsto \left\{a = \left(\left(q \cdot b\right) + \left(a ~\textup{mod}~ b\right)\right) \textrm{ if } q \in \mathbb{Z}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameter: 19
body: 2
1ExprTuple19
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple20, 9
7Literal
8ExprTuple19, 10
9Operationoperator: 11
operands: 12
10Literal
11Literal
12ExprTuple13, 14
13Operationoperator: 15
operands: 16
14Operationoperator: 17
operands: 18
15Literal
16ExprTuple19, 21
17Literal
18ExprTuple20, 21
19Variable
20Variable
21Variable