logo

Expression of type Implies

from the theory of proveit.numbers.integration

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import S
from proveit.core_expr_types import f__x_1_to_n, x_1_to_n
from proveit.logic import Forall, Implies, InSet
from proveit.numbers import Integrate, RealNonPos
In [2]:
# build up the expression from sub-expressions
sub_expr1 = [x_1_to_n]
expr = Implies(Forall(instance_param_or_params = sub_expr1, instance_expr = InSet(f__x_1_to_n, RealNonPos), domain = S), InSet(Integrate(index_or_indices = sub_expr1, integrand = f__x_1_to_n, domain = S), RealNonPos))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left[\forall_{x_{1}, x_{2}, \ldots, x_{n} \in S}~\left(f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{\le 0}\right)\right] \Rightarrow \left(\left[\int_{x_{1}, x_{2}, \ldots, x_{n} \in S}~f\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right] \in \mathbb{R}^{\le 0}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 8
4Operationoperator: 31
operands: 7
5Literal
6ExprTuple8
7ExprTuple9, 17
8Lambdaparameters: 21
body: 10
9Operationoperator: 11
operand: 14
10Conditionalvalue: 13
condition: 19
11Literal
12ExprTuple14
13Operationoperator: 31
operands: 15
14Lambdaparameters: 21
body: 16
15ExprTuple18, 17
16Conditionalvalue: 18
condition: 19
17Literal
18Operationoperator: 20
operands: 21
19Operationoperator: 22
operands: 23
20Variable
21ExprTuple24
22Literal
23ExprTuple25
24ExprRangelambda_map: 26
start_index: 28
end_index: 29
25ExprRangelambda_map: 27
start_index: 28
end_index: 29
26Lambdaparameter: 37
body: 33
27Lambdaparameter: 37
body: 30
28Literal
29Variable
30Operationoperator: 31
operands: 32
31Literal
32ExprTuple33, 34
33IndexedVarvariable: 35
index: 37
34Variable
35Variable
36ExprTuple37
37Variable