logo

Expression of type InSet

from the theory of proveit.numbers.integration

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import fx, x
from proveit.logic import InSet
from proveit.numbers import Integrate, Real
In [2]:
# build up the expression from sub-expressions
expr = InSet(Integrate(index_or_indices = [x], integrand = fx, domain = Real), Real)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left[\int_{x \in \mathbb{R}}~f\left(x\right)\right] \in \mathbb{R}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 11
operands: 1
1ExprTuple2, 14
2Operationoperator: 3
operand: 5
3Literal
4ExprTuple5
5Lambdaparameter: 13
body: 6
6Conditionalvalue: 7
condition: 8
7Operationoperator: 9
operand: 13
8Operationoperator: 11
operands: 12
9Variable
10ExprTuple13
11Literal
12ExprTuple13, 14
13Variable
14Literal