logo

Expression of type Conditional

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, n, x
from proveit.logic import Equals, InSet
from proveit.numbers import Exp, Mult, Natural, Neg, two
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Mult(two, n)
expr = Conditional(Equals(Exp(Neg(x), sub_expr1), Exp(x, sub_expr1)), InSet(n, Natural))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left\{\left(-x\right)^{2 \cdot n} = x^{2 \cdot n} \textrm{ if } n \in \mathbb{N}\right..
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
condition_delimiter'comma' or 'and'commacomma('with_comma_delimiter', 'with_conjunction_delimiter')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Conditionalvalue: 1
condition: 2
1Operationoperator: 3
operands: 4
2Operationoperator: 5
operands: 6
3Literal
4ExprTuple7, 8
5Literal
6ExprTuple21, 9
7Operationoperator: 11
operands: 10
8Operationoperator: 11
operands: 12
9Literal
10ExprTuple13, 14
11Literal
12ExprTuple19, 14
13Operationoperator: 15
operand: 19
14Operationoperator: 17
operands: 18
15Literal
16ExprTuple19
17Literal
18ExprTuple20, 21
19Variable
20Literal
21Variable