logo

Expression of type Lambda

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, a, x
from proveit.logic import And, Equals, InSet, NotEquals
from proveit.numbers import Exp, Log, RealPos, one
In [2]:
# build up the expression from sub-expressions
expr = Lambda([a, x], Conditional(Equals(Exp(a, Log(a, x)), x), And(InSet(a, RealPos), InSet(x, RealPos), NotEquals(a, one))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a, x\right) \mapsto \left\{a^{\textrm{log}_a\left(x\right)} = x \textrm{ if } a \in \mathbb{R}^+ ,  x \in \mathbb{R}^+ ,  a \neq 1\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 23
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 25
6Literal
7ExprTuple9, 10, 11
8Operationoperator: 12
operands: 13
9Operationoperator: 15
operands: 14
10Operationoperator: 15
operands: 16
11Operationoperator: 17
operands: 18
12Literal
13ExprTuple24, 19
14ExprTuple24, 20
15Literal
16ExprTuple25, 20
17Literal
18ExprTuple24, 21
19Operationoperator: 22
operands: 23
20Literal
21Literal
22Literal
23ExprTuple24, 25
24Variable
25Variable