logo

Expression of type ExprTuple

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, a
from proveit.logic import And, InSet, NotEquals
from proveit.numbers import Exp, Real, RealPos, two, zero
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(a, Conditional(InSet(Exp(a, two), RealPos), And(InSet(a, Real), NotEquals(a, zero)))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a \mapsto \left\{a^{2} \in \mathbb{R}^+ \textrm{ if } a \in \mathbb{R} ,  a \neq 0\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 21
body: 3
2ExprTuple21
3Conditionalvalue: 4
condition: 5
4Operationoperator: 15
operands: 6
5Operationoperator: 7
operands: 8
6ExprTuple9, 10
7Literal
8ExprTuple11, 12
9Operationoperator: 13
operands: 14
10Literal
11Operationoperator: 15
operands: 16
12Operationoperator: 17
operands: 18
13Literal
14ExprTuple21, 19
15Literal
16ExprTuple21, 20
17Literal
18ExprTuple21, 22
19Literal
20Literal
21Variable
22Literal