logo

Expression of type Lambda

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, r, theta
from proveit.logic import And, InSet, NotEquals, NotInSet
from proveit.numbers import Exp, Integer, Mult, Real, RealPos, e, frac, i, pi, two
In [2]:
# build up the expression from sub-expressions
expr = Lambda([r, theta], Conditional(NotEquals(Mult(r, Exp(e, Mult(i, theta))), r), And(InSet(r, RealPos), InSet(theta, Real), NotInSet(frac(theta, Mult(two, pi)), Integer))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(r, \theta\right) \mapsto \left\{\left(r \cdot \mathsf{e}^{\mathsf{i} \cdot \theta}\right) \neq r \textrm{ if } r \in \mathbb{R}^+ ,  \theta \in \mathbb{R} ,  \frac{\theta}{2 \cdot \pi} \notin \mathbb{Z}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple20, 36
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 20
7Literal
8ExprTuple10, 11, 12
9Operationoperator: 33
operands: 13
10Operationoperator: 15
operands: 14
11Operationoperator: 15
operands: 16
12Operationoperator: 17
operands: 18
13ExprTuple20, 19
14ExprTuple20, 21
15Literal
16ExprTuple36, 22
17Literal
18ExprTuple23, 24
19Operationoperator: 25
operands: 26
20Variable
21Literal
22Literal
23Operationoperator: 27
operands: 28
24Literal
25Literal
26ExprTuple29, 30
27Literal
28ExprTuple36, 31
29Literal
30Operationoperator: 33
operands: 32
31Operationoperator: 33
operands: 34
32ExprTuple35, 36
33Literal
34ExprTuple37, 38
35Literal
36Variable
37Literal
38Literal