logo

Expression of type Lambda

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprRange, IndexedVar, Lambda, Variable, a, b, m
from proveit.core_expr_types import a_1_to_m
from proveit.logic import And, Equals, InSet
from proveit.numbers import Complex, Exp, Mult, RealPos, one
from proveit.numbers.exponentiation import prod_ai_raise_b__1_to_m
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Variable("_a", latex_format = r"{_{-}a}")
expr = Lambda([a_1_to_m, b], Conditional(Equals(Exp(Mult(a_1_to_m), b), prod_ai_raise_b__1_to_m), And(ExprRange(sub_expr1, InSet(IndexedVar(a, sub_expr1), RealPos), one, m), InSet(b, Complex))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a_{1}, a_{2}, \ldots, a_{m}, b\right) \mapsto \left\{\left(a_{1} \cdot  a_{2} \cdot  \ldots \cdot  a_{m}\right)^{b} = \left(\left(a_{1}\right)^{b} \cdot  \left(a_{2}\right)^{b} \cdot  \ldots \cdot  \left(a_{m}\right)^{b}\right) \textrm{ if } \left(a_{1} \in \mathbb{R}^+\right) ,  \left(a_{2} \in \mathbb{R}^+\right) ,  \ldots ,  \left(a_{m} \in \mathbb{R}^+\right) ,  b \in \mathbb{C}\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 1
body: 2
1ExprTuple26, 35
2Conditionalvalue: 3
condition: 4
3Operationoperator: 5
operands: 6
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9, 10
7Literal
8ExprTuple11, 12
9Operationoperator: 32
operands: 13
10Operationoperator: 21
operands: 14
11ExprRangelambda_map: 15
start_index: 30
end_index: 31
12Operationoperator: 24
operands: 16
13ExprTuple17, 35
14ExprTuple18
15Lambdaparameter: 38
body: 19
16ExprTuple35, 20
17Operationoperator: 21
operands: 22
18ExprRangelambda_map: 23
start_index: 30
end_index: 31
19Operationoperator: 24
operands: 25
20Literal
21Literal
22ExprTuple26
23Lambdaparameter: 38
body: 27
24Literal
25ExprTuple34, 28
26ExprRangelambda_map: 29
start_index: 30
end_index: 31
27Operationoperator: 32
operands: 33
28Literal
29Lambdaparameter: 38
body: 34
30Literal
31Variable
32Literal
33ExprTuple34, 35
34IndexedVarvariable: 36
index: 38
35Variable
36Variable
37ExprTuple38
38Variable