logo

Expression of type ExprTuple

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import Add, Mult, frac, one, two
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(frac(Add(Mult(one, two), Mult(two, one)), Mult(two, two)), one)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(\frac{\left(1 \cdot 2\right) + \left(2 \cdot 1\right)}{2 \cdot 2}, 1\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 15
1Operationoperator: 2
operands: 3
2Literal
3ExprTuple4, 5
4Operationoperator: 6
operands: 7
5Operationoperator: 12
operands: 8
6Literal
7ExprTuple9, 10
8ExprTuple14, 14
9Operationoperator: 12
operands: 11
10Operationoperator: 12
operands: 13
11ExprTuple15, 14
12Literal
13ExprTuple14, 15
14Literal
15Literal