logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3  ⊢  
  : , : , :
1reference33  ⊢  
2instantiation4, 5  ⊢  
  : , : , :
3instantiation6, 7, 8, 20, 9*, 10*  ⊢  
  : , : , :
4axiom  ⊢  
 proveit.logic.equality.substitution
5instantiation11, 12, 58, 63, 40, 13, 14*  ⊢  
  : , : , : , :
6theorem  ⊢  
 proveit.numbers.division.frac_cancel_left
7instantiation76, 16, 15  ⊢  
  : , : , :
8instantiation76, 16, 17  ⊢  
  : , : , :
9instantiation18, 30  ⊢  
  :
10instantiation19, 20  ⊢  
  :
11theorem  ⊢  
 proveit.numbers.exponentiation.exp_factored_real
12instantiation76, 21, 22  ⊢  
  : , : , :
13instantiation23, 24  ⊢  
  : , :
14instantiation25, 30  ⊢  
  :
15instantiation76, 27, 26  ⊢  
  : , : , :
16theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero
17instantiation76, 27, 28  ⊢  
  : , : , :
18theorem  ⊢  
 proveit.numbers.multiplication.elim_one_right
19theorem  ⊢  
 proveit.numbers.division.frac_one_denom
20instantiation29, 30, 31  ⊢  
  : , :
21theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_pos_within_real_pos
22instantiation76, 32, 49  ⊢  
  : , : , :
23theorem  ⊢  
 proveit.logic.equality.equals_reversal
24instantiation33, 34, 35  ⊢  
  : , : , :
25theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
26instantiation76, 37, 36  ⊢  
  : , : , :
27theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero
28instantiation76, 37, 38  ⊢  
  : , : , :
29theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
30instantiation76, 62, 39  ⊢  
  : , : , :
31instantiation76, 62, 40  ⊢  
  : , : , :
32theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos
33axiom  ⊢  
 proveit.logic.equality.equals_transitivity
34instantiation41, 78, 67, 42, 43, 44, 57, 47, 45  ⊢  
  : , : , : , : , : , :
35instantiation46, 57, 47, 48  ⊢  
  : , : , :
36instantiation76, 50, 49  ⊢  
  : , : , :
37theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero
38instantiation76, 50, 51  ⊢  
  : , : , :
39instantiation76, 69, 52  ⊢  
  : , : , :
40instantiation53, 58, 54  ⊢  
  : , :
41theorem  ⊢  
 proveit.numbers.addition.disassociation
42axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
43instantiation55  ⊢  
  : , :
44theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
45instantiation56, 57  ⊢  
  :
46theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_13
47instantiation76, 62, 58  ⊢  
  : , : , :
48instantiation59  ⊢  
  :
49theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat2
50theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int
51theorem  ⊢  
 proveit.numbers.numerals.decimals.posnat1
52instantiation76, 74, 60  ⊢  
  : , : , :
53theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
54instantiation76, 69, 61  ⊢  
  : , : , :
55theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
56theorem  ⊢  
 proveit.numbers.negation.complex_closure
57instantiation76, 62, 63  ⊢  
  : , : , :
58instantiation64, 65, 66  ⊢  
  : , : , :
59axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
60instantiation76, 77, 67  ⊢  
  : , : , :
61instantiation76, 74, 68  ⊢  
  : , : , :
62theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
63instantiation76, 69, 70  ⊢  
  : , : , :
64theorem  ⊢  
 proveit.logic.sets.inclusion.unfold_subset_eq
65instantiation71, 72  ⊢  
  : , :
66assumption  ⊢  
67theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
68instantiation73, 75  ⊢  
  :
69theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
70instantiation76, 74, 75  ⊢  
  : , : , :
71theorem  ⊢  
 proveit.logic.sets.inclusion.relax_proper_subset
72theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.nat_pos_within_real
73theorem  ⊢  
 proveit.numbers.negation.int_closure
74theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
75instantiation76, 77, 78  ⊢  
  : , : , :
76theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
77theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
78theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
*equality replacement requirements