logo

Expression of type Equals

from the theory of proveit.numbers.exponentiation

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import a, b, c, d
from proveit.logic import Equals
from proveit.numbers import Exp, Mult, subtract
In [2]:
# build up the expression from sub-expressions
sub_expr1 = Exp(a, d)
sub_expr2 = Exp(b, c)
sub_expr3 = Exp(a, subtract(c, d))
expr = Equals(Mult(sub_expr1, sub_expr3, sub_expr2), Mult(sub_expr1, Mult(sub_expr3, sub_expr2))).with_wrapping_at(2)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\begin{array}{c} \begin{array}{l} \left(a^{d} \cdot a^{c - d} \cdot b^{c}\right) =  \\ \left(a^{d} \cdot \left(a^{c - d} \cdot b^{c}\right)\right) \end{array} \end{array}
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()(2)('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'without_wrapping', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
directionDirection of the relation (normal or reversed)normalnormal('with_direction_reversed', 'is_reversed')
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 10
operands: 5
4Operationoperator: 10
operands: 6
5ExprTuple7, 12, 13
6ExprTuple7, 8
7Operationoperator: 15
operands: 9
8Operationoperator: 10
operands: 11
9ExprTuple17, 26
10Literal
11ExprTuple12, 13
12Operationoperator: 15
operands: 14
13Operationoperator: 15
operands: 16
14ExprTuple17, 18
15Literal
16ExprTuple19, 22
17Variable
18Operationoperator: 20
operands: 21
19Variable
20Literal
21ExprTuple22, 23
22Variable
23Operationoperator: 24
operand: 26
24Literal
25ExprTuple26
26Variable