logo

Show the Proof

In [1]:
import proveit
# Automation is not needed when only showing a stored proof:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%show_proof
Out[1]:
 step typerequirementsstatement
0instantiation1, 2, 3, ,  ⊢  
  : , : , :
1reference31  ⊢  
2instantiation31, 4, 5, ,  ⊢  
  : , : , :
3instantiation6, 65, 39, 38, 7, 40, 8, 9, 27, ,  ⊢  
  : , : , : , : , : , :
4instantiation31, 10, 11, ,  ⊢  
  : , : , :
5instantiation15, 12,  ⊢  
  : , : , :
6theorem  ⊢  
 proveit.numbers.multiplication.disassociation
7instantiation49  ⊢  
  : , :
8instantiation13, 23, 44,  ⊢  
  : , :
9instantiation13, 27, 14,  ⊢  
  : , :
10instantiation15, 16,  ⊢  
  : , : , :
11instantiation17, 23, 27, 58, ,  ⊢  
  : , : , :
12instantiation18, 46, 52, 21, 56, 19, 20*,  ⊢  
  : , : , : , :
13theorem  ⊢  
 proveit.numbers.exponentiation.exp_complex_closure
14instantiation63, 55, 21  ⊢  
  : , : , :
15axiom  ⊢  
 proveit.logic.equality.substitution
16instantiation22, 27, 23,  ⊢  
  : , :
17theorem  ⊢  
 proveit.numbers.exponentiation.pos_power_of_product
18theorem  ⊢  
 proveit.numbers.exponentiation.exp_factored_real
19instantiation24, 25  ⊢  
  : , :
20instantiation26, 27  ⊢  
  :
21instantiation28, 52, 29  ⊢  
  : , :
22theorem  ⊢  
 proveit.numbers.multiplication.commutation
23instantiation63, 55, 30  ⊢  
  : , : , :
24theorem  ⊢  
 proveit.logic.equality.equals_reversal
25instantiation31, 32, 33  ⊢  
  : , : , :
26theorem  ⊢  
 proveit.numbers.exponentiation.complex_x_to_first_power_is_x
27instantiation63, 55, 34  ⊢  
  : , : , :
28theorem  ⊢  
 proveit.numbers.addition.add_real_closure_bin
29instantiation63, 59, 35  ⊢  
  : , : , :
30instantiation63, 59, 36  ⊢  
  : , : , :
31axiom  ⊢  
 proveit.logic.equality.equals_transitivity
32instantiation37, 38, 39, 65, 40, 41, 44, 42, 51  ⊢  
  : , : , : , : , : , :
33instantiation43, 51, 44, 45  ⊢  
  : , : , :
34instantiation63, 57, 46  ⊢  
  : , : , :
35instantiation63, 61, 47  ⊢  
  : , : , :
36instantiation63, 61, 48  ⊢  
  : , : , :
37theorem  ⊢  
 proveit.numbers.addition.disassociation
38axiom  ⊢  
 proveit.numbers.number_sets.natural_numbers.zero_in_nats
39theorem  ⊢  
 proveit.numbers.numerals.decimals.nat2
40theorem  ⊢  
 proveit.core_expr_types.tuples.tuple_len_0_typical_eq
41instantiation49  ⊢  
  : , :
42instantiation50, 51  ⊢  
  :
43theorem  ⊢  
 proveit.numbers.addition.subtraction.add_cancel_triple_32
44instantiation63, 55, 52  ⊢  
  : , : , :
45instantiation53  ⊢  
  :
46assumption  ⊢  
47instantiation54, 62  ⊢  
  :
48assumption  ⊢  
49theorem  ⊢  
 proveit.numbers.numerals.decimals.tuple_len_2_typical_eq
50theorem  ⊢  
 proveit.numbers.negation.complex_closure
51instantiation63, 55, 56  ⊢  
  : , : , :
52instantiation63, 57, 58  ⊢  
  : , : , :
53axiom  ⊢  
 proveit.logic.equality.equals_reflexivity
54theorem  ⊢  
 proveit.numbers.negation.int_closure
55theorem  ⊢  
 proveit.numbers.number_sets.complex_numbers.real_within_complex
56instantiation63, 59, 60  ⊢  
  : , : , :
57theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.real_pos_within_real
58assumption  ⊢  
59theorem  ⊢  
 proveit.numbers.number_sets.real_numbers.rational_within_real
60instantiation63, 61, 62  ⊢  
  : , : , :
61theorem  ⊢  
 proveit.numbers.number_sets.rational_numbers.int_within_rational
62instantiation63, 64, 65  ⊢  
  : , : , :
63theorem  ⊢  
 proveit.logic.sets.inclusion.superset_membership_from_proper_subset
64theorem  ⊢  
 proveit.numbers.number_sets.integers.nat_within_int
65theorem  ⊢  
 proveit.numbers.numerals.decimals.nat1
*equality replacement requirements