logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, ExprTuple, Lambda, x, y, z
from proveit.logic import Equals, InSet
from proveit.numbers import Complex, Mult, frac
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda(y, Conditional(Equals(frac(Mult(y, x), Mult(z, x)), frac(y, z)), InSet(y, Complex))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(y \mapsto \left\{\frac{y \cdot x}{z \cdot x} = \frac{y}{z} \textrm{ if } y \in \mathbb{C}\right..\right)
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameter: 21
body: 3
2ExprTuple21
3Conditionalvalue: 4
condition: 5
4Operationoperator: 6
operands: 7
5Operationoperator: 8
operands: 9
6Literal
7ExprTuple10, 11
8Literal
9ExprTuple21, 12
10Operationoperator: 14
operands: 13
11Operationoperator: 14
operands: 15
12Literal
13ExprTuple16, 17
14Literal
15ExprTuple21, 22
16Operationoperator: 19
operands: 18
17Operationoperator: 19
operands: 20
18ExprTuple21, 23
19Literal
20ExprTuple22, 23
21Variable
22Variable
23Variable