logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, x
from proveit.core_expr_types import w_1_to_m, z_1_to_n
from proveit.numbers import Neg
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(w_1_to_m, Neg(x), z_1_to_n)
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(w_{1}, w_{2}, \ldots, w_{m}, -x,z_{1}, z_{2}, \ldots, z_{n}\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3
1ExprRangelambda_map: 4
start_index: 9
end_index: 5
2Operationoperator: 6
operand: 12
3ExprRangelambda_map: 8
start_index: 9
end_index: 10
4Lambdaparameter: 17
body: 11
5Variable
6Literal
7ExprTuple12
8Lambdaparameter: 17
body: 13
9Literal
10Variable
11IndexedVarvariable: 14
index: 17
12Variable
13IndexedVarvariable: 15
index: 17
14Variable
15Variable
16ExprTuple17
17Variable