logo

Expression of type Lambda

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import Conditional, Lambda, x, y
from proveit.logic import And, Equals, InSet, NotEquals
from proveit.numbers import Complex, Neg, frac, zero
In [2]:
# build up the expression from sub-expressions
expr = Lambda([x, y], Conditional(Equals(frac(Neg(x), Neg(y)), frac(x, y)), And(InSet(x, Complex), InSet(y, Complex), NotEquals(y, zero))))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(x, y\right) \mapsto \left\{\frac{-x}{-y} = \frac{x}{y} \textrm{ if } x \in \mathbb{C} ,  y \in \mathbb{C} ,  y \neq 0\right..
In [5]:
stored_expr.style_options()
no style options
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0Lambdaparameters: 15
body: 1
1Conditionalvalue: 2
condition: 3
2Operationoperator: 4
operands: 5
3Operationoperator: 6
operands: 7
4Literal
5ExprTuple8, 9
6Literal
7ExprTuple10, 11, 12
8Operationoperator: 14
operands: 13
9Operationoperator: 14
operands: 15
10Operationoperator: 17
operands: 16
11Operationoperator: 17
operands: 18
12Operationoperator: 19
operands: 20
13ExprTuple21, 22
14Literal
15ExprTuple28, 29
16ExprTuple28, 23
17Literal
18ExprTuple29, 23
19Literal
20ExprTuple29, 24
21Operationoperator: 26
operand: 28
22Operationoperator: 26
operand: 29
23Literal
24Literal
25ExprTuple28
26Literal
27ExprTuple29
28Variable
29Variable