logo

Expression of type ExprTuple

from the theory of proveit.numbers.division

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit import ExprTuple, a, x, y
from proveit.logic import Equals, InSet, NotEquals
from proveit.numbers import Complex, zero
In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(InSet(a, Complex), InSet(x, Complex), InSet(y, Complex), Equals(x, y), NotEquals(a, zero))
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")
Passed sanity check: expr matches stored_expr
In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())
\left(a \in \mathbb{C}, x \in \mathbb{C}, y \in \mathbb{C}, x = y, a \neq 0\right)
In [5]:
stored_expr.style_options()
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()
 core typesub-expressionsexpression
0ExprTuple1, 2, 3, 4, 5
1Operationoperator: 8
operands: 6
2Operationoperator: 8
operands: 7
3Operationoperator: 8
operands: 9
4Operationoperator: 10
operands: 11
5Operationoperator: 12
operands: 13
6ExprTuple17, 14
7ExprTuple15, 14
8Literal
9ExprTuple16, 14
10Literal
11ExprTuple15, 16
12Literal
13ExprTuple17, 18
14Literal
15Variable
16Variable
17Variable
18Literal